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We studied the energy equilibration process of elastic wave propagation through a strong-scattering random
medium via multiple-scattering theory and the radiative transfer equation. The equilibration of the shear and
compressional energy densities due to the mode conversions is clearly observed in both calculations, although
the ratio of the shear energy density to the compressional energy density obtained from the multiple-scattering
theory is higher than that obtained from the radiative transfer equation, which has the value predicted by the
principle of the equipartition of wave modes. The discrepancy is due to the presence of a negative interference
energy inside the sample. This is in contrast to the common belief that the interference energy density of a
weak-scattering random medium always averages to zero inside the medium except near its boundaries. We
also showed that the negative interference energy is concentrated near the boundary of each scatterer and,
therefore, cannot be averaged to zero. In addition, we studied various distribution functions of the transmitted
waves in thin samples before the establishment of the energy equilibration. We found that these distribution
functions are described well by a random-phasor-sum model and they exhibit crossover behavior from ballistic
to diffusive transport.
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I. INTRODUCTION

In the past two decades, great progress has been made in
the study of the propagation of classical waves in random
media.1 One important subject is the multiple scattering of
elastic waves in complex solid media, particularly in relation
to high-frequency seismic wave propagation2 and the ultra-
sonic characterization of polycrystalline metals.3,4 Unlike
other classical waves, there are two types of elastic waves
propagating in solids, i.e., shear �S� waves and compres-
sional �P� waves. This leads to the principle of equipartition
in the diffusive regime, which states that the ratio of S-wave
energy to P-wave energy converges to a universal number
independent of the fluctuations that cause the scattering.4–8

This number is believed to be the ratio of density of states of
the two modes in an unbounded medium5 or equivalently
�cp /cs�d,9 where d is the dimensionality of the medium and
cp and cs are, respectively, the compressional and shear wave
speeds. The equipartition of elastic waves has been theoreti-
cally studied by using the radiative transfer equation �RTE�
and the diffusion equation.6–8 Results showed that the energy
equilibration is reached inside a random medium after a suf-
ficient number of multiple scatterings, and the ratio is inde-
pendent of the magnitude or polarization of the source. Re-
cently, the equipartition of seismic coda waves created by
earthquakes was observed by Hennino et al.10 Interestingly,
in addition to the S-wave and P-wave energies, they also
observed the existence of a negative average interference en-
ergy �Ei� at the earth’s free surface due to boundary-induced
mode conversions. They also predicted that the nonvanishing
Ei appears only within a distance of a few shear wavelengths
from the surface.

Present theoretical approaches are generally based on the
RTE. However, this approach considers only the energy den-
sities of S and P waves and assumes that the interference
energy is averaged to zero. This is true in the weak-scattering

limit when the average distance between two scatterers is
large compared to the wavelengths, and thus the near-field
effects can be ignored. However, when the average distance
between two scatterers becomes comparable to the wave-
lengths, the near-field effects cannot be ignored and Ei may
not be averaged to zero inside the medium. To the best of our
knowledge, such near-field effects have not been reported.
Thus, investigating how these near-field effects affect the
statistical properties of elastic wave propagation in strong-
scattering random media and determining to what extent the
RTE still applies are both interesting issues.

For these purposes, we studied elastic wave propagation
through a strong-scattering, two-dimensional random elastic
medium. We chose the random medium and the frequency of
the waves such that the average separation of two scatterers
was comparable to the wavelengths of both S waves and P
waves. We utilized two theoretical approaches in this study.
First, we used the multiple-scattering theory �MST� method
in conjunction with a sparse-matrix canonical grid �SMCG�
method11 to run large-scale numerical simulations of elastic
wave propagation. The SMCG method greatly enhances the
efficiency of the MST method, particularly with large-sized
samples containing large number of scatterers. Through this
first-principles approach, we calculated the shear energy den-
sity Es, the compressional energy density Ep, and the infer-
ence energy density Ei inside the samples. Second, we solved
the RTE by using realistic physical parameters determined in
the first approach. Since the interference energy density is
assumed to be averaged to zero, only the shear energy den-
sity, Es

RTE and the compressional energy density Ep
RTE can be

calculated inside the samples. Both S and P wave incidences
were considered in both approaches.

We present three main results. First, in contrast to the
common belief, our MST results show a negative �Ei� across
the sample, which does not average to zero in a random
environment. To understand the origin of the negative �Ei�,
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we also studied various energy density distributions resulting
from a plane-wave scattering by a single scatterer. We found
that the negative �Ei� is mainly concentrated near the bound-
ary of the scatterers and is always accompanied by an en-
hancement of the shear energy density by a similar amount.
Since such near-field effects occur near the boundary, they
cannot be averaged to zero. Their existence also causes the
RTE to be inaccurate in a strong-scattering medium. Second,
the results of both MST calculations and RTE show clearly
an energy equilibration process, i.e., the ratio of the shear
energy density to the compressional energy density ap-
proaches to a constant value inside the sample, which is in-
dependent of the source polarization. In the case of RTE, the
equilibrated value of Es

RTE /Ep
RTE agrees well with the prin-

ciple of equipartition proposed in Ref. 5, i.e., �cp /cs�2 in two
dimensions. However, the multiple-scattering results give a
higher equilibrated ratio of �Es� / �Ep� than �cp /cs�2. This is
due to the existence of a negative �Ei� across the sample. It is
interesting that the spatial distributions of ��Es�+ �Ei�� and
�Ep� agree well with the distributions of the shear and com-
pressional energy densities obtained by the RTE, i.e., Es

RTE

and Ep
RTE. Thus, the ratio of ��Es�+ �Ei�� to �Ep� approaches

the expected ratio of �cp /cs�2. This is a result of the cancel-
lation between the enhancement of �Es� and the negative �Ei�
near the boundary of the scatterer. Finally, by using the MST
method, we have also studied the statistics of transmitted
fields in thin samples before the establishment of energy
equilibration. By separating the transmitted field into a co-
herent part and a diffusive part and studying the amplitude
and phase distributions of both parts, we also observed the
crossover from ballistic to diffusive wave behavior through
an analysis based on a random-phasor-sum �RPS� model.
This model considers the random transmitted field as a sum
of a circular random phasor and a constant, and it was pro-
posed to explain the statistics of transmitted fields obtained
in microwave experiments through random waveguides.12

This model was later applied to transmitted fields through
randomly corrugated waveguides13 and reflected fields in
disordered photonic crystals.14

This paper is organized as follows: In Sec. II, we intro-
duce our system and simulation method. The RTE is pre-
sented in Sec. III, where we first discuss all the scattering
mean free paths for our system and then the integral solution
to the RTE for elastic waves in two dimensions. The results
obtained from both the MST and the RTE are presented and
discussed in Sec. IV. The field distributions in thin samples
and the associated crossover behavior from ballistic to diffu-
sive are presented in Sec. V. Conclusions are presented in
Sec. VI.

II. SYSTEM AND SIMULATION METHOD

We obtained our random medium by randomizing a two-
dimensional �2D� elastic phononic crystal consisting of a
square array of epoxy cylinders with a radius of rs and a set
of elastic parameters ��sca ,�sca ,�sca�, embedded in an iron
host with another set of elastic parameters ��0 ,�0 ,�0�, where
� denotes the mass density and � and � represent the Lamé

constants. The lattice constant of the phononic crystal is a.
To randomize the phononic crystal, we moved the posi-

tion of each cylinder randomly within a distance of 0.5a. If
two cylinders overlapped, the move was forbidden. The pro-
cedure was repeated 1000 times to randomize the positions
of the scatterers completely. We generated an ensemble of
200 configurations for our study.

To ensure that our samples are completely randomized,
we calculated the radial distribution function �RDF�, g�r�,
according to Eq. �10� of Ref. 15. For any given random
configuration of a square sample of size 40a, we arbitrarily
chose one cylinder located near the center of the sample as
the coordinate origin. We calculated the RDF by sweeping
circular rings of constant width dr radially outward from the
origin to R, the outer radius of the largest ring. The largest
ring should not touch the boundary of the sample. We
counted the number of cylinders, dN�r�, inside an annular
ring at distance r and calculated RDF by using g�r�
= �dN /dV� / �N /V�,15 where dV is the area of the annular ring,
N is the total numbers of cylinders inside all the rings, and V
represents the total area occupied by all the rings. In our
case, the ratio of N /V is 1 /a2 on average.

The averaged results of g�r� is shown by a solid curve in
Fig. 1�a�. For comparison, we also show the RDF of the
ordered phononic crystal in Fig. 1�b�. The absence of any
peaks in Fig. 1�a� demonstrates that the random systems gen-
erated here are completely random without any residual pe-
riodicity. In fact, our result is very similar to Fig. 3�a� of the
Ref. 15, where the RDF was obtained from a random distri-
bution of cylinders in a 2D sample at a small filling factor.

The samples used in our study had a width of W=50a and
different thicknesses. For a given thickness L, the total num-
ber of cylinders in the sample is WL /a2=50L /a. The whole
sample was embedded in the material which is the same as
the sample’s matrix, i.e., iron in this case, so that the wave
could leak out freely without being reflected at the sample’s
boundary. The source was a plane wave passing through an
open slit located about two lattice constants in front of the
sample. The width of the slit was 40a, which was about 20%
smaller than that of the sample to avoid the diffraction
caused by the sample’s edges.

FIG. 1. The radial distribution function g�r� as function of dis-
tance away from the center of the cylinder. �a� For random systems.
�b� For a 2D phononic crystal in a square lattice.
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The displacement field u inside the x-y plane satisfies the
elastic wave equation:16

�
�2ui

�t2 = � · ��ct
2 � ui� + � · ��cl

2 �u

�xi
�

+
�

�xi
���cl

2 − 2�ct
2� � · u�, i = x,y , �1�

where cp=	��+2�� /� and cs=	� /� denote the compres-
sional and shear wave speeds, respectively. In general, the
displacement field u can be decoupled into compressional
and shear parts, i.e., u=up+us=��p+�� ��sêz�, where �p

and �s are the scalar potential functions. In terms of these
two scalar potentials, Eq. �1� can be rewritten, in the fre-
quency domain, as two Helmholtz equations:

��2 + kp
2��p = 0, ��2 + ks

2��s = 0, �2�

where kp=� /cp and ks=� /cs are the compressional and
shear wave vectors and � is the angular frequency. The gen-
eral solution to Eq. �2� can be written as ���sca�
=
ma�m�sca�Jm�k�scar�eim	��=s , p� in the cylinder, where
k�sca are the wave vectors in the cylinders, and ���0�
=
m�a�m�0�Jm�k�0r�+b�m�0�Hm

�1��k�0r��eim	 ��=s , p� in the
matrix, where k�0 are the wave vectors in the matrix. Here,
Jm and Hm

�1� are Bessel functions and Hankel functions of the
first kind, respectively. The coefficients of the Bessel and
Hankel functions can be determined by the boundary condi-
tions, which are the continuities of the radial and tangential
components of the displacement field, i.e., ur and u	, and the
continuities of the stresses, 
rr and 
r	, on the surface of
each cylinder. The stresses are defined as


rr = �� + 2��
�ur

�r
+ ��1

r

�u	

�	
+

ur

r
� ,


r	 = ��1

r

�ur

�	
+

�u	

�r
−

u	

r
� .

The continuities on the surface of a cylinder relate bsm�0� and
bpm�0� to asm�0� and apm�0� through bsm�0�=Dm

ssasm�0�
+Dm

spapm�0� and bpm�0�=Dm
psasm�0�+Dm

ppapm�0�, where
Dm

���� ,�=s , p� are the Mie-like scattering coefficients deter-
mined by the boundary conditions at the interface between
the cylinder and the matrix.17 Then, the scattering properties
of the system can be calculated by the MST method. The
MST method is a well-established numerical method and has
been used to study the scattering and transmission properties
of a finite-sized sample.18–20 The MST method gives rise to a
set of linear equations. The number of linear equations for
elastic waves is twice that for electromagnetic or acoustic
waves in two dimensions, due to the existence of both com-
pressional and transverse waves in elastic media. The opera-
tion cost of solving these equations is O��2Nm�3�, while the
memory cost is O��2Nm�2�. Here, Nm is the number of cylin-
ders, N, multiplied by �2m+1�. m is the cutoff angular mo-
mentum quantum number used in the calculations. Thus, the
calculations become extremely time consuming when the
number of cylinders or the number of configurations is large.

However, the difficulty can be overcome by incorporating
the so-called SMCG method into the MST method.11 The
SMCG method is an efficient algorithm based on the decom-
position of strong and weak interactions among cylinders.
Here, the strong and weak interactions are the interactions
between the near and distant cylinders, respectively. Basi-
cally, the idea is to utilize a two-dimensional uniform canoni-
cal grid that covers the sample. Every cylinder is associated
with its nearest grid point. Then, the weak interactions,
which consume the majority of the required CPU time and
memory, can be calculated by using the grid points. With the
successive use of the addition theorem, the weak interactions
between two distinct cylinders are calculated indirectly from
one cylinder to its associated grid point, then from the grid
point to the grid point associated with the other cylinder, and
finally from the second grid point to the other cylinder. This
facilitates the use of fast Fourier transform, which reduces
the operation cost from O��2Nm�3� to O��2Nm�log�2Nm��.11

In our calculations, we have used an iterative method called
the generalized minimal residue �GMRES� method21 to solve
the coupled linear equations given by MST. The GMRES
method is very robust and accurate even for dense matrices,
and it reduces the memory cost from O��2Nm�2� to O�2Nm�.
We have also checked the convergence of our results by
increasing the cutoff angular momentum quantum number m
and decreasing normwise backward error in GMRES to per-
form our calculations. We finally adopted m=10 and back-
ward error equals to 10−6, while the result showed that the
convergence has already been reached when m=8 and the
normwise backward error in GMRES equals to 10−5.

Once we obtained the displacement fields, it is straight-
forward to calculate the energy densities by using the follow-
ing formula:22

E = Es + Ep + Ei =
�

2
�� � u�2 + ��

2
+ ���� · u�2

+ �

i�j

� �ui

�xj

�uj

�xi
−

�ui

�xi

�uj

�xj
� , �3�

where Es and Ep are the shear and compressional energy
densities, respectively. The term Ei, which involves cross
terms, is the interference energy density caused by the inter-
ference effects of the S and P waves. This term is expected to
average to zero inside a random medium after configura-
tional averaging. However, we will show later that Ei is
peaked near the boundary of the scatterer and, therefore, can-
not be averaged to zero in the case of the strong-scattering
media considered here.

As mentioned previously, our system consists of ran-
domly placed epoxy cylinders in an iron host. The epoxy
cylinder has a radius of rs=0.15a. The mass densities of iron
and epoxy are �0=7780 kg /m3 and �s=1142 kg /m3, respec-
tively. The compressional wave speeds inside the iron and
epoxy are cp0=5825.2 m /s and cps=2569.5 m /s, respec-
tively. The shear wave speeds are cs0=3226.7 m /s for iron
and css=1138.4 m /s for epoxy.23
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III. THE RADIATIVE TRANSFER EQUATION

Before we present the RTE, we first discuss the relevant
single-scattering properties of our system, i.e., various scat-
tering cross sections and scattering mean free paths. These
quantities are required in solving the RTE. The scattering
mean free paths can be obtained from the scattering proper-
ties of each individual cylinder. First, let us consider the case
of shear wave incidence. For an S-polarized plane-wave in-
cident along the x axis, the displacement field, us

inc, has the
form

us
inc�r� = Aeiksxŷ , �4�

where A represents the amplitude. The scattered wave in the
far field has the form

usca�r� → r̂
fsp�	�
	r

Aeikpr + 	̂
fss�	�
	r

Aeiksr, �5�

where fss�	� and fsp�	� are the angular distributed amplitudes
of the scattered shear and compressional waves, respectively.
With these values, the total scattering cross sections for the
S-to-S-wave and S-to-P-wave scatterings can be obtained
through the relations 
ss=�2��fss�	��2d	 and 
sp

=�2��cp /cs��fsp�	��2d	, respectively. The total scattering
cross section for the shear wave is the sum of 
ss and 
sp,
i.e.,


s = 
ss + 
sp. �6�

Similarly, for a P-polarized plane-wave incidence, the total
scattering cross section becomes


p = 
ps + 
pp, �7�

where 
ps=�2��cs /cp��fps�	��2d	 and 
pp=�2��fpp�	��2d	 are
the total scattering cross sections for the P-to-S- and P-to-P-
wave scatterings, respectively.

Here, we have four scattering mean free paths: lss, lsp, lps,
and lpp, corresponding to the scattering of S-to-S-, S-to-P-,
P-to-S- and P-to-P waves, respectively. Since the scattering

mean free path is determined by the inverse of the product of
the total scattering cross section and the number density of
the scatterer, the corresponding scattering mean free paths
are

lss =
1

n
ss
, lsp =

1

n
sp
,

lps =
1

n
ps
, lpp =

1

n
pp
, �8�

where n is the number density, which is equal to 1 in our
system. Combining Eqs. �8� with Eqs. �6� and �7�, we obtain
the scattering mean free paths for the S and P waves as

1

ls
=

1

lss
+

1

lsp
,

1

lp
=

1

lps
+

1

lpp
. �9�

Physically, ls or lp gives the decay length of the coherent
intensity inside the sample, which also corresponds to the
phase randomization of the incident wave after a distance of
ls /2 or lp /2 due to the scattering.

The single-scattering properties of our system are shown

in Fig. 2, where a dimensionless frequency, f̃ = fa /cs0, is

used. In our study, we chose a particular frequency, f̃ =2.4,
indicated by the arrows in Fig. 2. The reason we chose this
frequency is that it is not close to any resonances shown in
Figs. 1�a�–1�d�. Furthermore, at this frequency, the four total
scattering cross sections are not small, i.e., 
ss=0.649a, 
sp
=0.141a, 
ps=0.255a, and 
pp=0.402a and, therefore, the
corresponding scattering mean free paths are not large, i.e.,
lss=1.54a, lsp=7.09a, lps=3.92a, and lpp=2.49a, which give
ls=1.26a and lp=1.52a. This makes our numerical simula-
tions more feasible.

FIG. 2. The total scattering
cross section for a epoxy cylinder
embedded in an iron host vs the
dimensionless frequency. �a� From
S-to-S wave; �b� from S-to-P
wave; �c� from P-to-S wave; �d�
from P-to-P wave.
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An elastic RTE was derived from first principles by
Weaver4 and Ryzhik et al.24 From this equation, many as-
pects of energy transport behavior of elastic waves in ran-
dom media can be determined, such as mode conversion and
equipartition, etc. However, this approach deals with weak-
scattering random media and, therefore, the interference en-
ergy is assumed to be averaged to zero inside an unbounded
random medium. In two dimensions, the RTE takes a simple
form:

ŝ · �Ii�r, ŝ� +
Ii�r, ŝ�

li
=

1

2�



j=1,2


0

2�

Pij�ŝ�, ŝ�

�Ij�r, ŝ��dŝ�, i = 1,2, �10�

where I1= Ip and I2= Is are the compressional and shear en-
ergy current densities, respectively. l1 and l2 correspond to
the total scattering mean free paths of P and S waves defined
previously, i.e., lp and ls, respectively. P= �ŝ� , ŝ� is the reduced
Muller matrix, which governs the scattering of the intensity
from direction ŝ� to direction ŝ. For a medium containing
discrete scatterers, the matrix is related to the number density
n and the single scatterer differential cross sections and has
the following form:

P= �ŝ�, ŝ� = 2n��
d


d
�pŝ� → pŝ�

d


d
�sŝ� → pŝ�

d


d
�pŝ� → sŝ�

d


d
�sŝ� → sŝ� � .

�11�

Now, we consider a plane wave normally incident on the
input surface of a sample of thickness L at position x=0. Due
to the symmetry, the energy current density only depends on
x. For simplicity, we assume the sample boundaries are non-
reflecting, so we neglect internal reflections inside the
sample. This leads to simple boundary conditions that the
forward propagating energy current density at the input
boundary equals to the original incident energy current den-
sity, and the backward propagating energy current density at
the output boundary equals to zero, i.e., Ip,s�x=0,	�
= Ip0,s0��	−0� for −� /2�	�� /2 and Ip,s�x=L ,	�=0 for
� /2�	�3� /2. The use of nonreflecting boundary condi-
tion in the RTE is consistent with the random systems we
used for MST calculation. It is easy to show that the solution
to Eq. �10� satisfies the following two integral equations:

�Ip�x,	�
Is�x,	�

� = �Ip0e−x/lp

Is0e−x/ls ���	 − 0�

+ 
0

x dx�

cos 	
�e−�x−x��/�lp cos 	� 0

0 e−�x−x��/�ls cos 	� �
�

0

2� �Ppp Psp

Pps Pss
��Ip�x�,	��

Is�x�,	��
�d	�, �12�

in the forward direction, i.e., 0� �	��� /2, and

�Ip�x,	�
Is�x,	�

� = 
L

x dx�

cos 	
�e−�x−x��/�lp cos 	� 0

0 e−�x−x��/�ls cos 	� �
�

0

2� �Ppp Psp

Pps Pss
��Ip�x�,	��

Is�x�,	��
�d	�, �13�

in the backward direction, i.e., � /2� �	���. Here, a
matched boundary condition has been assumed.

We solve Eqs. �12� and �13� numerically and obtain the
energy density, Ep,s

RTE, by using the relation

Ep,s
RTE�x� = 

0

2�

Ip,s�x, ŝ�/cp,sdŝ . �14�

According to the equipartition principle discussed in Ref.
5, we expect that the ratio Es

RTE�x� /Ep
RTE�x� approaches a

constant value that equals the ratio of the density of states
�DOS� of the two modes when x is sufficiently large. Since
in 2D, the DOS is inversely proportional to the square of the
wave speed, the equilibrated ratio of Es

RTE�x� /Ep
RTE�x� is ex-

pected to be �cp /cs�2.9

IV. RESULTS AND DISCUSSIONS

Figures 3�a� and 3�b� show the results of various energy
densities inside a sample with thickness L=14a for the S-
and P-wave incidences, respectively. The solid, dashed, and
dotted curves represent the shear �Es

RTE�, compressional
�Ep

RTE�, and total �Etotal
RTE� energy densities calculated using the

RTE. The open circles, open squares, open up triangles, and
open down triangles represent, respectively, the averaged
shear ��Es��, compressional ��Ep��, interference ��Ei��, and
total ��Etotal�� energy densities calculated by using the MST
method. These results are obtained from an average of 200
configurations. We also normalized the results of two differ-
ent calculations in a way that �Ep� has the same value as Ep

RTE

in the middle of the sample. From these two figures, it is
interesting to observe that the interference energy density
calculated by the MST method does not average to zero. It
has a negative value across the sample, i.e., �Ei��0. It is also
interesting to observe that the spatial distributions of both
�Ep� and �Etotal� agree excellently with Ep

RTE and Etotal
RTE, re-

spectively, although the shear energy densities obtained from
the two methods are different. This observation implies that
the sum of the shear and interference energy densities calcu-
lated by the MST method should also agree well with the
shear energy density calculated by the RTE. To check this,
we plot the sum �Es�+ �Ei� by solid circles in Figs. 3�a� and
3�b�, which indeed overlaps with the solid curves �Es

RTE� ob-
tained from the RTE.

To examine the behavior of energy equilibration, we plot
the ratio of the shear energy density to the compressional
energy density in Fig. 4�a�. For the case of S-wave incidence,
the results obtained from the RTE and the MST are shown by
a solid curve and open squares, respectively. For the case of
P-wave incidence, the corresponding results are shown by a
dashed curve and open circles. It is clearly seen that both the
results of the RTE and the MST clearly exhibit an energy
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equilibration process. In other words, after some sufficient
number of scatterings, the ratios of the shear energy density
to the compressional energy density obtained from two dif-
ferent incident waves converge to a single constant number,
except for a slight upturn near the output surface. However,
their equilibrated ratios are different. The equilibrated ratio
obtained from the RTE agrees well with the prediction of the
equipartition principle, i.e., Es

RTE /Ep
RTE= �cp /cs�2�3.26,

whereas the result obtained from the MST method is Es /Ep
�3.7, which is larger than the prediction of the equipartition
principle. This is expected from Fig. 3�a�, which shows
�Es��Es

RTE due to the presence of a negative interference
energy density, �Ei�. However, if the ratio of ��Es�
+ �Ei�� / �Ep� is plotted, there is an excellent agreement with
Es

RTE /Ep
RTE, as shown in Fig. 4�b�. This is also expected from

the results shown in Fig. 3�a�.
The slight upturn of the ratio found in Fig. 4 is due to the

absence of backward scatterings coming from outside the
sample. To show this, we have done the following calcula-
tion. We considered a sample of thickness L=28a and solved
the RTE to obtain Es

RTE and Ep
RTE inside the sample. The ratio

Es
RTE /Ep

RTE near the middle of the sample has the equilibrated
value of 3.26. Then, by using Eq. �13�, we calculated, to the
first-order scattering, the energy densities at the middle point
of the sample contributed by the backward energy current
density coming from the left-half of the sample. It was found

FIG. 3. �Color online� ��a� and �b�� The energy densities inside a slab of random medium for S- and P-wave incidences, respectively. The
solid �black�, dashed �red�, and short-dashed �green� curves correspond to the shear �Es

RTE�, compressional �Ep
RTE�, and total �Etotal

RTE�, energy
densities obtained from RTE, respectively. The corresponding quantities determined by multiple-scattering simulations are plotted in open
�black� circles, open �red� squares, and open down �green� triangles. The open up �blue� triangles represent simulated interference energy
density �Ei� and the solid �black� circles are the simulated �Es�+ �Ei�. ��c� and �d�� Energy percentage for S- and P-wave incidences,
respectively. The solid �black� and dashed �red� curves show that the percentage of shear and compressional energy densities occupies the
total energy density, i.e., Es

RTE /Etotal
RTE and Ep

RTE /Etotal
RTE, respectively. The open �black� circles, open �red� squares, open upper �blue� triangles,

and solid �black� circles correspond to the results of �Es� / �Etotal�, �Ep� / �Etotal�, �Ei� / �Etotal�, and ��Es�+ �Ei�� / �Etotal� obtained from the MST
method, respectively.

FIG. 4. �Color online� Ratios of energy densities determined
from different methods inside the random media. ��a� and �b�� Com-
parison between the ratios determined from RTE and MST. �a� The
solid black and dashed red curves represent Es

RTE /Ep
RTE obtained

from RTE for S- and P-wave incidences, respectively. The squares
�black� and circles �red� are �Es� / �Ep� determined by the MST
method for S- and P-wave incidences, respectively. �b� The solid
black and dashed red curves are the same as those in �a�. The
squares �black� and circles �red� are ��Es�+ �Ei�� / �Ep� determined
by the MST method for S- and P-wave incidences, respectively.

WU et al. PHYSICAL REVIEW B 77, 125125 �2008�

125125-6



that the ratio of the backward shear energy density to the
compressional energy density was 3.12, which is smaller
than the equilibrated value of 3.26. This implies that, rela-
tively, the shear energy density has less contribution from the
backward current than the compressional energy density.
Since there is no backward current at the sample boundary,
the ratio of shear energy density to the compressional energy
density will increase accordingly.

To understand the origin of the negative �Ei� and the in-
teresting agreement between the sum �Es�+ �Ei� and Es

RTE, we
normalized various energy densities in each calculation by its
total energy density. The results are plotted in Figs. 3�c� and
3�d�. It is shown that the functions �Ep� / �Etotal� and ��Es�
+ �Ei�� / �Etotal� obtained from the MST calculation agree well
with Ep

RTE /Etotal
RTE and Es

RTE /Etotal
RTE obtained from the RTE, re-

spectively, whereas the ratio of shear energy density to the
total energy density obtained from the two methods are dif-
ferent as expected. From these figures, we also find that the
interference energy occupies about 10% of the total energies
for both S- and P-wave incidences, which is quite uniform
across the sample except near the boundaries. It should be
pointed out that the interference energy is generally believed
to be averaged to zero inside the bulk random media.10 This
is true for weak-scattering random media, where the near-
field effects due to the scattering can be ignored and the RTE
can be applied. However, in the strong-scattering random
medium studied here, both the S- and P-wave wavelengths

corresponding to the frequency, f̃ =2.4, i.e., �s�0.4a and
�p�0.7a, are comparable to the average separation between
two scatterers, i.e., a. Thus, the interference energy density
in the neighborhood of each scattering constitutes a non-
negligible part of the total energy density and such near-field
effects cannot be averaged out after configurational
averaging.25 To check this point, we redid the calculation by
using the same scatterers and frequency, but reduced the
number density of the scatterers by a factor 1 /4. Our new
results are similar to the ones shown in Fig. 3, except that the
interference energy now occupies about 5% of the total en-
ergy. This confirms the above explanation that the negative
interference energy is due to the near-field effects and is
expected to vanish in the weak-scattering limit where the
average distance between two neighboring scatterers is much
greater than the wavelengths. Since the number density of
the scatterers is zero immediately outside our sample, the
interference energy density also approaches zero in a dis-
tance a within the sample boundary, as can been seen in Figs.
3�c� and 3�d�.

To understand better the distribution of the inference en-
ergy density in the vicinity of each cylinder, we also calcu-
lated various energy density distributions resulting from a
plane-wave scattering by a single cylinder. To show these
results, we first integrated the energy density, E�r���, in an
annular ring defined by r− dr

2 � �r����r+ dr
2 centered at the

cylinder and divided by its area, 2�rdr. The angle-averaged
energy density distributions are plotted in Fig. 5 as functions
of the distance from the center of the cylinder for both the
S-wave incidence �Fig. 5�a�� and the P-wave incidence �Fig.
5�b��, where the solid, dashed, and the dash-dotted curves
correspond to the shear, compressional, and interference den-

sities, respectively. The short-dashed curves denote the sum
of the shear and interference energy densities. Figure 5�a�
shows a large negative peak in the interference energy den-
sity near the boundary of the cylinder, i.e., r=0.15. Its mag-
nitude is about four times of the shear energy density away
from the boundary. This large negative peak cannot be aver-
aged to zero by any random environment and is the main
source of the negative interference energy density found in
Fig. 3. Away from the boundary, the interference energy den-
sity is small and exhibits oscillatory behavior, which is ex-
pected to be averaged out in a random environment. It is
interesting to see that, accompanied by the presence of a
large negative peak in the interference energy density, there
also exists a large enhancement in the shear energy density
by the similar magnitude near the boundary of the cylinder.
Thus, the cancellation of two peaks in the sum of these two
energy densities gives a smooth short-dashed curve in Fig.
5�a�. This explains why the sum of the shear and interference
energy densities calculated by the MST method agrees so
well with the shear energy density obtained from the RTE as
the large negative interference energy density is compensated
by the large positive enhancement in the shear energy den-
sity. Figure 5�b� shows the results of the P-wave incidence.
In this case, there exists a negative interference energy den-
sity inside the cylinder. However, its magnitude is more than
half of the compressional energy density away from the cyl-
inder. Since the compressional energy density is smaller than
the shear energy density by roughly a factor 3.7, the negative
interference energy induced by the P-wave scattering can
only make a small contribution to the negative energy den-
sity found in Fig. 3. Even so, the existence of the negative
interference energy density is also accompanied by a similar
enhancement in the shear energy density.

FIG. 5. �Color online� Various angle-averaged energy density
distributions for a plane-wave scattering on a single cylinder. The
black solid, red dashed, and blue dash-dotted curves represent shear,
compressional, and interference energy densities, respectively. The
shear plus interference energy densities are plotted in the green
short-dashed curves; �a� for S-wave incidence and �b� for P-wave
incidence.
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It should be pointed out that, strictly speaking, a higher
than expected equilibrated ratio of �Es� / �Ep� does not neces-
sary implies a violation of the principle of equipartition of
wave modes. The wave modes considered in this work are S-
and P-polarized waves of the host medium. The presence of
scatterers can strongly alter the mode structures as well as
the density of states in the vicinity of a scatterer. The altered
eigenstates in general are mixtures of S- and P-polarized
waves, which give rise to a nonzero interference energy den-
sity. Although there is no simple and direct method to dem-
onstrate the principle of equipartition in a strongly scattered
medium, we try to show it indirectly by calculating various
averaged energy density distributions close to a scatterer lo-
cated well inside a sample using both S- and P-wave inci-
dences. If equipartition principle holds, these distributions
should be independent of the polarization of the source.

To study this, we increased the lattice constant of the or-
dered phononic crystal from a to 2a. The random samples
studied here have a width of W=100a, or equivalently, 50
layers, and a length of L=40a, i.e., 20 layers. Therefore, the
total number of scatterers in each sample is 1000. In the
randomization procedure, for the convenience of this study,
we imposed a condition that any two cylinders should be at
least 1a+2rs apart. To calculate the energy density distribu-
tions near a scatterer, we picked up 25 cylinders located well
inside the sample and away from the incident wave so that
the energy equilibration has already been established. We
then calculated the angle-averaged energy distributions for
the shear, compressional, and interference terms as functions
of distance away from the center of each cylinder. The cal-
culations were repeated for 200 different configurations. The
averaged results of 5000 different local configurations of the
scatterers are shown in Fig. 6. The black solid, red dashed,
and blue dash-dotted curves represent shear, compressional,
and interference energy density distributions, respectively,
for the S-wave incidence. The corresponding results of a
P-wave incidence are shown by the black circles, red
squares, and blue triangles, respectively. It is clearly seen
that these distributions are independent of the source polar-

ization. It is also seen that away from the scatterer, the inter-
ference energy densities die off quickly and the ratio of the
shear and compressional energy densities approaches to that
of the host medium, i.e., �cp /cs�2�3.26. These results dem-
onstrate that the principle of equipartition holds in general
and a higher than expected equilibrated ratio of �Es� / �Ep�
found in this work is a result of modification of mode struc-
tures near the scatterers.

V. CROSSOVER FROM BALLISTIC TO DIFFUSIVE
BEHAVIOR

By using the MST method, we also studied the field dis-
tributions of the transmitted waves in thin samples before
energy equilibration occurs. These results were analyzed by
the RPS model,12 from which we also observed crossover
behavior from the ballistic to diffusive regions.

As discussed in Sec. II, for an S-polarized �or
P-polarized� plane wave propagating along the x direction,
the displacement field u is along the y or x direction. The
transmitted displacement field along the y or x direction can
be decomposed into two terms:

ux,y = �ux,y� + �ux,y . �15�

The first term �ux,y� represents the coherent part of the trans-
mitted waves, where the angular brackets represent the en-
semble average over different disorder realizations, and the
second term �ux,y represents the residue part of the waves. In
this section, we present a statistical analysis of both ux,y and
�ux,y. To do so, we express the complex field ux,y as uy
=uy0ei� for the S-wave incidence and ux=ux0ei� for the
P-wave incidence, where ux0,y0 is the amplitude and � de-
notes the phase.

In the RPS model, a normalized amplitude, A=ux0,y0 /
, is
used, where 2
= ��ux,y�2�− ��ux,y��2, and the amount of the co-
herent component of the total field is represented by a pa-
rameter, k= ��ux,y�� /
. The RPS model gives the following
distribution functions for the amplitude and phase:12

P�A,k� = A exp�−
A2 + k2

2
�I0�Ak� , �16�

and

P��,k� =
1

2�
exp�− k2/2� +

k cos �

	2�

�exp�−
�k sin ��2

2
�erf�k cos �� , �17�

where I0�x� is a modified Bessel function of the first kind of
order zero, and erf�x� is an error function.

We first consider a thin sample with thickness L=2a. The
samples used here again have a width W=50a and number
density 1 /a2. Both S- and P-wave incidences are considered.
For each configuration, we collected 101 data points of the
transmitted field u along the y axis in a range from −10a to
10a at a distance 2a away from the output surface. Results of
200 random configurations were obtained. From this en-

FIG. 6. �Color online� Various equilibrated energy density dis-
tributions as functions of distance from the center of a cylinder
inside a random medium. The black solid, red dashed, and blue
dash-dotted curves represent shear, compressional, and interference
energy densities, respectively, for S-wave incidence. The black
circles, red squares, and blue triangles correspond to shear, com-
pressional, and interference energy densities, respectively, for
P-wave incidence.
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semble of 101�200 data points, we studied the statistical
distributions of both the normalized amplitude A and the
phase �. The results of the S-wave incidence are shown in
Figs. 7�a� and 7�b�, where the open circles represent the am-
plitude and phase distributions of the total field and the open
squares are used for the residual field. To compare the results
with the RPS model, we also plot the results of Eqs. �16� and
�17� in Figs. 7�a� and 7�b�, where the solid lines represent the
amplitude and phase distributions of the total field and the
dashed lines are used for the residual field. Here, we have
used the value of k=0.95 obtained from the numerical simu-
lations for the total field, and k=0 is used for the residual
field. From Figs. 7�a� and 7�b�, we find excellent agreements
between the distributions obtained from the RPS model and
numerical simulations.

Similar results are plotted in Figs. 7�c� and 7�d� for the
case of P-wave incidence. In this case, numerical simulations
give k=1.09 for the total field. Excellent agreement between
the RPS model and numerical simulations are clearly seen in
this case. Since the sample thickness is only 2a, which is
between one to two mean free paths for both S and P waves,
there still exists a significant amount of the coherent compo-
nent in the transmitted waves. However, the amplitude dis-
tribution of the residual field is always of the Rayleigh type
as can be seen clearly from Figs. 7�a� and 7�c�.

Next, we increase the sample thickness to L=8a, which is
slightly thinner than the thickness at which energy equilibra-
tion is established. The amplitude and field distributions are
plotted in Fig. 8 for both S- and P-wave incidences. Figure 8
exhibits good agreement between the RPS result and the

FIG. 7. �Color online� Normal-
ized amplitude �a� and phase �b�
distribution in the sample with a
thickness of 2a for the S-wave in-
cidence. The open black circles
and open red squares are the total
and residual field distributions cal-
culated by the MST method, re-
spectively. The solid �black� lines
and dashed �red� lines are the the-
oretical predictions of the total
and residual fields made by the
RPS model, respectively. �c� and
�d� exhibit the same quantities as
�a� and �b�, correspondingly, but
the incident wave is a compres-
sional wave.

FIG. 8. �Color online� Normal-
ized amplitude �a� and phase �b�
distribution in the sample with a
thickness of 8a for the S-wave in-
cidence. The open black circles
and open red squares are the total
and residual field distribution cal-
culated by the MST method, re-
spectively. The solid �black� lines
and dashed �red� lines are the the-
oretical predictions of the total
and residual fields made by the
RPS model, respectively. �c� and
�d� exhibit the same quantities as
�a� and �b�, correspondingly, but
the incident wave is a compres-
sional wave.
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simulated data. In this case, the simulation results give k
=0.09 and 0.16 for S- and P-wave incidences, respectively.
Since the value of k is about an order of magnitude smaller
than the case of the L=2a sample, a much smaller coherent
component is found in this thicker sample. In this case, the
amplitude distribution of the total field becomes indiscern-
ible to that of the residual field, as shown in Figs. 8�a� and
8�c�. However, a slight deviation from complete randomiza-
tion in the phase distribution of the total field can still be
seen in Figs. 8�b� and 8�d�. Thus, the establishment of energy
equilibration does not necessarily imply a complete random-
ization of the incident wave. This observation is consist with
a previous study on the dynamics of energy equilibration of
elastic waves in the seismic coda.26 Figures 7 and 8 also
exhibit crossover behavior from ballistic transport to diffu-
sive transport in strongly scattered elastic media.

VI. CONCLUSIONS

By using the MST method in conjunction with the SMCG
method, we have numerically studied elastic wave propaga-
tion through strongly scattered random media. The spatial
distributions of the calculated compressional and total energy
densities agree well with those obtained from the RTE. How-
ever, a negative interference energy is found inside the
sample. By studying various energy density distributions

arising from the plane-wave scattering of a single cylinder,
we found that the negative interference energy density occurs
close to the boundary of the cylinder, and, therefore, cannot
be averaged to zero. Accompanying the negative interference
energy density is the enhancement of the shear energy den-
sity by a similar magnitude. Thus, the sum of the two energy
densities coincides with the shear energy density calculated
by the radiative transport equation. Both results show clearly
an energy equilibration process. The equilibrated ratio of the
shear to compressional energy density in the RTE calcula-
tions agrees excellently with the principle of equipartition of
two wave modes. However, a higher value is found in the
multiple-scattering calculations due to the presence of the
negative interference energy density. We have also studied
the statistical properties of transmitted waves through thin
samples by separating the transmitted fields into coherent
and residual parts. It has been found that the field and phase
distributions of both residual and total fields can be well
described by the RPS model and they exhibit crossover be-
havior from ballistic to diffusive wave propagation in
strongly scattered random elastic media.
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